

Available online at www.sciencedirect.com

Short communication

Actions of sipatrigine, 202W92 and lamotrigine on R-type and T-type Ca²⁺ channel currents

Atticus H. Hainsworth^{a,*}, Nicolle C.L. McNaughton^b, Alexey Pereverzev^c, Toni Schneider^c, Andrew D. Randall^b

^a Pharmacology Research Group, School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
^b Neurology CEDD, GlaxoSmithKline Ltd., Harlow CM19 5AW, UK
^c Institute of Neurophysiology, University of Koln, D-50931 Cologne, Germany

Received 12 March 2003; accepted 14 March 2003

Abstract

Relatively little has been published on the pharmacology of R-type and T-type Ca^{2^+} channels. Here, whole-cell Ca^{2^+} channel currents were recorded from human embryonic kidney 293 cell-lines transfected with either $\alpha1E$ subunits (R-type currents) or $\alpha1G$ or $\alpha1I$ subunits (T-type currents). R-type currents were inhibited by sipatrigine and the related compound 202W92 (R-(-)-2,4-diamino-6-(fluromethyl)-5-(2,3,5-trichlorophenyl)pyrimidine) with IC_{50} 10 and 56 μ M, respectively. A therapeutic concentration of lamotrigine (10 μ M) inhibited R-type currents (30%) but was without effect on $\alpha1I$ -mediated T-type currents. Lamotrigine was also a weak inhibitor of T-type currents mediated by $\alpha1G$ subunits (<10% inhibition by 100 μ M).

Keywords: Ca²⁺ channel, voltage-activated; Lamotrigine; Antiepileptic drug; Anticonvulsant

1. Introduction

R-type (resistant) Ca²⁺ channel currents are found in most cell types studied, and the α1E (Ca_V2.3) subunit, known to underlie some R-type currents (see Lee et al., 2002), is widely distributed in the nervous system both at somata and nerve endings (Williams et al., 1994; Wu et al., 1998; Yokoyama et al., 1995). Published R-type pharmacology is sparse, with no agents reported to inhibit R-type currents at therapeutic concentrations (Cai et al., 1997; Nakashima et al., 1998; Randall and Tsien, 1997; Tottene et al., 2000; Williams et al., 1994). Some low-voltageactivated T-type Ca²⁺ channel currents have similar electrophysiological properties to R-type currents (Randall and Tsien, 1997), and T-type currents were originally attributed to the $\alpha 1E$ subunit (Soong et al., 1993), now known to produce R-type. T-type Ca²⁺ currents (mediated by α1G, α1H or α1I subunit-containing channels, Perez-Reyes et al., 1998) can potently influence neuronal excitability (Randall

E-mail address: ahainsworth@dmu.ac.uk (A.H. Hainsworth).

and Benham, 1999). Excessive activity of T-type currents in thalamo-cortical projection neurons has been proposed to underlie the slow wave discharges characteristic of typical absence seizures (Coulter et al., 1989), though this model is likely to be an oversimplification (Leresche et al., 1998; Crunelli and Leresche, 2002).

The chemically related series sipatrigine (previously BW619C89), 202W92 (R-(-)-2,4-diamino-6-(fluromethyl)-5-(2,3,5-trichlorophenyl)pyrimidine) and lamotrigine have shown varying degrees of inhibition in a variety of Na⁺ and Ca²⁺ channel preparations (Caputi et al., 2001; Hainsworth et al., 2000; Xie and Hagan, 1998). Lamotrigine is a broad spectrum antiepileptic agent with efficacy in typical absence seizures and Lennox-Gastaut syndrome (Matsuo, 1999; McCabe, 2000). Though the principle mechanism of action is considered to be blockade of voltage-gated Na⁺ and Ca²⁺ channels (Leach et al., 1995; Xie and Hagan, 1998), the utility of lamotrigine in absence epilepsy and Lennox-Gastaut syndrome is as yet incompletely explained. Here we report for the first time the actions of sipatrigine, 202W92 and lamotrigine on R-type current mediated by $\alpha 1E$ channels and of lamotrigine on Ttype currents mediated by $\alpha 1G$ and $\alpha 1I$ channels.

^{*} Corresponding author. Tel.: +44-116-250-6368; fax: +44-116-257-7287.

2. Methods

Human embryonic kidney 293 cells stably expressing either rat $\alpha 1G$ or rat $\alpha 1I$ subunits ($Ca_V3.1$ and $Ca_V3.3$, respectively, McNaughton et al., 2000), or human $\alpha 1E$ ($Ca_V2.3$) with $\beta 3$ subunits (Mehrke et al., 1997), were grown in Dulbecco's modified Eagle medium supplemented with foetal bovine serum (10-15%). In standard whole-cell recordings made at room temperature, Ca^{2+} channel currents were recorded using test pulses to -25 mV (T-type currents) or +10 mV (R-type currents), duration of 20-100

ms, applied every 10 s from a holding potential of -90 mV (McNaughton et al., 2000). A cesium-based intracellular solution containing 4 mM ATP and a tetraethylammonium-based extracellular solution containing 2.0-5.0 mM ${\rm Ca}^{2+}$ or ${\rm Ba}^{2+}$ ions, with no added sodium salts, allowed ${\rm Ca}^{2+}$ channel currents to be isolated. Series resistance (<10 M Ω) was compensated 70–80%. Data were low pass filtered (-3 dB, 2 kHz, 8-pole Bessel response) and sampled at ≥ 5 kHz. Drugs were dissolved in extracellular solution on the day of use and applied via a multi-barrel fast perfusion system. Sipatrigine mesylate and 202W92 mesy-

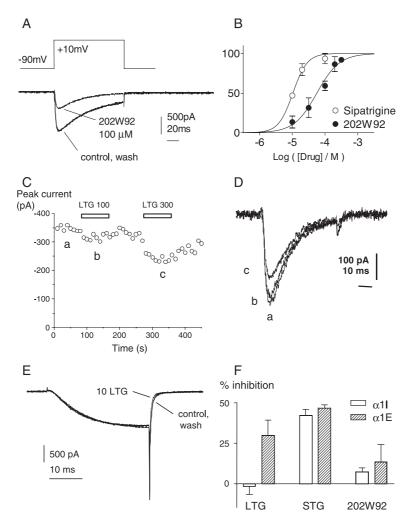


Fig. 1. Inhibition of R-type and T-type Ca^{2+} channel currents. (A) R-type whole-cell Ca^{2+} channel currents recorded from a human embryonic kidney 293 cell transfected with human $\alpha 1E$ and $\beta 3$ subunits in response to a square pulse command to +10 mV from a holding voltage of -90 mV (100 ms duration, applied every 10 s). Current traces are superimposed before (control) and during application of 202W92 ($100~\mu M$), then 1 min after removal of the drug (wash). (B) Concentration—inhibition relations for inhibition of R-type currents by sipatrigine (open symbols) and 202W92 (filled symbols). Points show mean % inhibition of peak current and error bars show 1 S.E.M. (n=4 in each case). Solid lines show the Langmuir—Hill curves best fit with IC_{50} values of 10 and 56 μ M for sipatrigine and 202W92, respectively, and Hill coefficients of 2.0 and 1.3 for sipatrigine and 202W92, respectively. (C) Time-course of peak amplitude of T-type whole-cell currents recorded from a human embryonic kidney 293 cell transfected with rat $\alpha 1G$ subunit in response to a square pulse command to -25 mV from a holding voltage of -90 mV (100 ms every 10 s). Horizontal bars indicate application of lamotrigine (LTG, 100, $300~\mu$ M). (D) Example traces of $\alpha 1G$ subunit-mediated T-type whole-cell current at time points marked a, b and c in panel C. (E) T-type whole-cell currents recorded from human embryonic kidney 293 cells transfected with rat $\alpha 1I$ subunits in response to a square pulse command of +65 mV from a holding voltage of -90 mV (100 ms every 10 s). Example traces are shown before (control) and during application of lamotrigine (LTG, $10~\mu$ M), then 1 min after removal of the drug (wash). (F) Comparison of the actions of lamotrigine (LTG), sipatrigine (STG) and 202W92 (all $10~\mu$ M) on rat $\alpha 1I$ -mediated T-type and human $\alpha 1E$ -mediated R-type currents. Bars show % inhibition of peak current, mean ± 1 S.E.M., n=3-7. Bars for inhibition of $\alpha 1I$ -mediated Caputi et al., $\alpha 1I$ -me

late salts were synthesized in the University of Greenwich, London, UK.

3. Results

Whole-cell R-type currents were routinely recorded from cells transfected with $\alpha 1E$ and $\beta 3$ subunits (see control traces in Fig. 1A) and were abolished by external application of $100~\mu M$ Ni²⁺ (not shown). Sipatrigine ($10-100~\mu M$), 202W92 ($10-300~\mu M$) and lamotrigine ($10~\mu M$) inhibited $\alpha 1E$ -mediated R-type currents (see example traces for 202W92, Fig. 1A). Pooled concentration—inhibition data for $\alpha 1E$ -mediated R-type currents by sipatrigine and 202W92 is shown in Fig. 1B (IC₅₀, $10~\mu M$ for sipatrigine, $56~\mu M$ for 202W92).

T-type currents have been previously reported in the $\alpha 1G$ -transfected and $\alpha 1I$ -transfected cell-lines used here (Caputi et al., 2001; McNaughton et al., 2000) and were routinely observed in the present experiments (see control traces in Fig. 1D,E). $\alpha 1G$ -mediated and $\alpha 1I$ -mediated T-type currents showed little sensitivity to lamotrigine under the conditions used here (Fig. 1C-F). At high concentrations, lamotrigine inhibited $\alpha 1G$ -mediated currents (<10% inhibition by 100 μ M, $30 \pm 4\%$ inhibition by 300 μ M, mean, S.E.M., n=4, see Fig. 1C-D). Pooled data comparing peak current inhibition of $\alpha 1E$ -mediated R-type with that of $\alpha 1I$ -mediated T-type currents by all three drugs at 10 μ M concentration is shown in Fig. 1F.

4. Discussion

R-type currents mediated by $\alpha 1E$ subunits were inhibited by sipatrigine and 202W92, both of which are neuroprotective agents in animal models of ischemia (Caputi et al., 2001; Hainsworth et al., 2000). Neuroprotective doses of sipatrigine produced brain concentrations in monkeys of 20–100 μM (Hainsworth et al., 2000). Sipatrigine has shown anticonvulsant activity in the seizure models where it has been tested—the genetically epilepsy-prone rat and DBA/2 audiogenic mouse (Meldrum et al., 1994; Reddy et al., 1998)—though these models have little specific relation to absence or Lennox-Gastaut syndrome. α1E-mediated currents were also inhibited by lamotrigine (10 µM), a concentration within the estimated range of therapeutic brain concentrations (4-40 μM, Leach et al., 1995). α1Ε protein is widely distributed in the central nervous system, including the somata and dendrites of thalamic neurons (Yokoyama et al., 1995). Thus, it is possible that inhibition of R-type currents may contribute to the anti-absence action of lamotrigine. This is the first report of the actions of sipatrigine, 202W92 and lamotrigine on R-type currents.

 $\alpha 1G$ -mediated and $\alpha 1I$ -mediated T-type currents were previously shown to be inhibited by sipatrigine and 202W92 (Caputi et al., 2001; McNaughton et al., 2000). Ca²⁺

channel currents mediated by $\alpha 1G$ subunits or $\alpha 1I$ subunits were relatively insensitive to lamotrigine under the conditions used here. These two channel subtypes are highly expressed in brain tissue, $\alpha 1G$ most likely being the form expressed in thalamic neurons (Randall and Benham, 1999).

In conclusion, $\alpha 1E$ -mediated R-type currents were inhibited by sipatrigine and less potently by 202W92. These R-type currents—much more than $\alpha 1G$ -mediated or $\alpha 1I$ -mediated T-type currents—were sensitive to a therapeutic concentration of lamotrigine.

Acknowledgements

We thank Dr. Michael J. Leach for supplying sipatrigine and 202W92 salts, and also for his helpful comments. The cDNA of human $\beta 3$ subunit was a generous gift of Dr. V. Flockerzi (Homburg/Saar, Germany).

References

Cai, D., Mulle, J.G., Yue, D.T., 1997. Inhibition of recombinant Ca²⁺ channels by benzothiazepines and phenylalkylamines: class-specific pharmacology and underlying molecular determinants. Mol. Pharmacol. 51, 872–881.

Caputi, L., Hainsworth, A.H., Lavaroni, F., Leach, M.J., McNaughton, N.C.L., Mercuri, N.B., Randall, A.D., Spadoni, F., Swan, J.H., Stefani, A., 2001. Neuroprotective actions in vivo and electrophysiological actions in vitro of 202W92. Brain Res. 919, 259–268.

Coulter, D.A., Huguenard, J.R., Prince, D.A., 1989. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann. Neurol. 25, 582–593.

Crunelli, V., Leresche, N., 2002. Childhood absence epilepsy: genes, channels, neurons and networks. Nat. Rev., Neurosci. 3, 371–382.

Hainsworth, A.H., Stefani, A., Calabresi, P., Smith, T.W., Leach, M.J., 2000. Sipatrigine (BW 619C89) is a neuroprotective agent and a sodium channel and calcium channel inhibitor. CNS Drug Rev. 6, 111–134.

Leach, M.J., Lees, G., Riddall, D.R., 1995. Lamotrigine: mechanisms of action. In: Levy, R.H., Mattson, R.H., Meldrum, B.S. (Eds.), Antiepileptic Drugs, 4th ed. Raven Press, New York, NY, pp. 861–869.

Lee, S.C., Choi, S., Lee, T., Kim, H.L., Chin, H., Shin, H.S., 2002. Molecular basis of R-type calcium channels in central amygdala neurons of the mouse. Proc. Natl. Acad. Sci. U. S. A. 99, 3276–3281.

Leresche, N., Parri, H.R., Erdemli, G., Guyon, A., Turner, J.P., Williams, S.R., Asprodini, E., Crunelli, V., 1998. On the action of the anti-absence drug ethosuximide in the rat and cat thalamus. J. Neurosci. 18, 4842–4853.

Matsuo, F., 1999. Lamotrigine. Epilepsia 40, S30-S36.

McCabe, P.H., 2000. New anti-epileptic drugs for the 21st century. Expert Opin. Pharmacother. 1, 633–674.

McNaughton, N.C.L., Hainsworth, A.H., Green, P.J., Randall, A.D., 2000. Inhibition of recombinant low-voltage-activated Ca(2+) channels by the neuroprotective agent BW619C89 (Sipatrigine). Neuropharmacology 39, 1247–1253.

Mehrke, G., Pereverzev, A., Grabsch, H., Hescheler, J., Schneider, T., 1997. Receptor-mediated modulation of recombinant neuronal class E calcium channels. FEBS Lett. 408, 261–270.

Meldrum, B.S., Smith, S.E., Lekieffre, D., Chapman, A.G., Graham, J.L., Pearce, P.C., 1994. Sodium-channel blockade and glutamate release: the mechanism of cerebroprotection by lamotrigine, BW1003C87 and BW619C89. In: Krieglstein, J., Oberpichler-Schwenk, H. (Eds.), Pharmacology of Cerebral Ischaemia. WVmbH, Stuttgart, pp. 203–209.

- Nakashima, Y.M., Todorovic, S.M., Pereverzev, A., Hescheler, J., Schneider, T., Lingle, C.J., 1998. Properties of Ba²⁺ currents arising from human alpha1E and alpha1Ebeta3 constructs expressed in HEK293 cells: physiology, pharmacology, and comparison to native T-type Ba²⁺ currents. Neuropharmacology 37, 957–972.
- Perez-Reyes, E., Cribbs, L.L., Daud, A., Lacerda, A.E., Barclay, J., Williamson, M.P., Fox, M., Rees, M., Lee, J.H., 1998. Molecular characterization of a neuronal low voltage-activated T-type calcium channel. Nature 391, 896–900.
- Randall, A.D., Benham, C.D., 1999. Recent advances in the molecular understanding of voltage-gated Ca²⁺ channels. Mol. Cell. Neurosci. 14, 255–272.
- Randall, A.D., Tsien, R.W., 1997. Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels. Neuropharmacology 36, 879–893.
- Reddy, N.L., Fan, W., Magar, S.S., Perlman, M.E., Yost, E., Zhang, L., Berlove, D., Fischer, J.B., Burke-Howie, K., Wolcott, T., Durant, G.J., 1998. Synthesis and pharmacological evaluation of *N,N*-diarylguanidines as potent sodium channel blockers and anticonvulsant agents. J. Med. Chem. 41, 3298–3302.

- Soong, T.W., Stea, A., Hodson, C.D., Dubel, S.J., Vincent, S.R., Snutch, T.P., 1993. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260, 1133–1136.
- Tottene, A., Volsen, S., Pietrobon, D., 2000. Alpha(1E) subunits form the pore of three cerebellar R-type calcium channels with different pharmacological and permeation properties. J. Neurosci. 20, 171–178.
- Williams, M.E., Marubio, L.M., Deal, C.R., Hans, M., Brust, P.F., Philipson, L.H., Miller, R.J., Johnson, E.C., Harpold, M.M., Ellis, S.B., 1994. Structure and functional characterization of neuronal a1E calcium channel subtypes. J. Biol. Chem. 269, 22347–22357.
- Wu, L.-G., Borst, J.G.G., Sakmann, B., 1998. R-type Ca²⁺ currents evoke transmitter release at a rat central synapse. Proc. Natl. Acad. Sci. U. S. A. 95, 4720–4725.
- Xie, X., Hagan, R.M., 1998. Cellular and molecular actions of lamotrigine: possible mechanisms of efficacy in bipolar disorder. Neuropsychobiology 38, 119–130.
- Yokoyama, C.T., Westenbroek, R.E., Hell, J.W., Soong, T.W., Snutch, T.P., Catterall, W.A., 1995. Biochemical properties and subcellular distribution of the neuronal class E calcium channel alpha 1 subunit. J. Neurosci. 15, 6419–6432.